Scalable solutions for genomic data analysis

Tomasz Gambin

Institute of Computer Science, Warsaw University of Technology

http://twitter.com/biodatageeks

Warsaw University of Technology

About us

Areas of interest:

- Genomic data analysis
- Distributed solutions for genomics

Applications:

- Distributed pipelines for variant calling
- Depth of coverage analysis, quality control
- Distributed range joins implementation
- Efficient variant data warehousing solutions
- Interpretation tools

That's us

James Lupski

Eric Boerwinkle

Richard Gibbs

Genomics - Big Data Problem

The day when every newborn gets their DNA sequenced is not far away: http://www.nih.gov/news/health/sep2013/nhgri-04.htm.

Figure: Genomics as big data problem, Source: Knights Cancer Institute, Oregon Health Sciences University & Intel

Challenges

Data size

Heavy files, inefficient data access, temporary files generation. High storage cost

Data security

'All or nothing' approach is not enough for research projects or clinics

Our solutions

Distributed calculations

Reimplementation of algorithms using Apache Spark and other Big Data tools

Optimized algorithms

Ensuring scalability to handle population-scale analysis

Unified data model

Providing ANSI SQL-compliant interfaces Table-oriented processing

Standard technologies

Fine-grained access control

SeQuiLa (range joins)- scalable intersection of interval sets

e.g: What variants (snps) occur WITHIN genes

chr	name	start	end
11	Gene1	100	150
11	Gene2	200	250
11	Gene3	300	350
12	Gene4	100	150

chr	start	end	ref	alt	af		
11	101	101	С	Т	0.5		
11	104	105	CT	С	0.01		
11	134	135	AA	Π	0.01		
11	201	201	Α	G	0.05		
12	102	102	Т	G	0.05		
13	1004	1005	TA	CG	0.04		
13	2004	2005	TA	CG	0.04		

chr	name	start	end	start	end	ref	alt	af
11	Gene1	100	150	101	101	С	Т	0.5
11	Gene1	100	150	104	105	CT	С	0.01
11	Gene1	100	150	134	135	AA	TT	0.01
11	Gene2	200	250	201	201	A	G	0.05
12	Gene4	100	150	102	102	Т	G	0.05

SELECT g.chr, g.name, g.start, g.end, s.start, s.end, s.af FROM genes g JOIN snps s ON (g.chr = s.chr AND s.start>= g.start AND s.end <= g.end)</pre>

- counting overlaps
- additional criterias on overlap (maxGap, minOverlap)

real genomic example: (160 *10⁶) x (200 *10³) or even: (2,6 *10⁹) x (200 *10³)

SeQuiLa (range joins): methods

Extension of Catalyst (SparkSQL component)

- 1. **IntervalTree** structure is used for efficient overlaps search a. Interval Forest (one tree for each chromosome)
- 2. augmenting IntervalTree with table data if possible

Algorithm for range join table A (small) with table B (big):

- 1. Send to driver node all table A partitions
- 2. Build Interval Forest in driver node
- 3. Broadcast Interval Forest to all worker nodes
- 4. Perform interval search
- 5. Join search results with table A if necessary

SeQuiLa (range joins)

SeQuiLa: an elastic, fast and scalable SQL-oriented solution for processing and querying genomic intervals

Marek Wiewiórka, Anna Leśniewska, Agnieszka Szmurło, Kacper Stępień, Mateusz Borowiak, Michał Okoniewski, Tomasz Gambin 🐱

Bioinformatics, bty940, https://doi.org/10.1093/bioinformatics/bty940 Published: 14 November 2018 Article history →

single node

- data: WES (17 GB
- reads (160 *10⁶) x targets (200 *10³))

Benchmark against:

- featureCounts
- SparkGenap
- spark default

Distributed Depth of Coverage:

 \bigcirc Distributed calculations

- Simple event-based algorithm
- \checkmark Low level optimizations
- $\frac{1}{2}$ Standalone version

Number of CPU cores

samtools mosdepth SeQuiLa-cov

2019 SeQuiLa-cov: A fast and scalable library for depth of coverage calculations

Marek Wiewiórka^{1,*}, Agnieszka Szmurło^{1,*}, Wiktor Kuśmirek¹ and Tomasz Gambin^{1,†}

¹Institute of Computer Science, Warsaw University of Technology, ul. Nowowiejska 15/19, 00–665 Warsaw, Poland,

nttp://biodatageeks.org/sequila/

Distributed variant annotation pipeline:

\supset Automatic execution

- \bigcirc Customizations
- \bigcirc Monitoring of task execution
- $\frac{1}{2}$ Distributed calculations

Benchmark:

VCF pipeline processing time [hours]

10

C.	Off	cleanup 8		zettagene				♥ ⊗
©	On	cov_only	None	zettagene	000000000	2019-03-18 13:02 3	$\bigcirc \bigcirc \bigcirc$	⊙ ♥ ♥ ₼ № ★ ≣ ≁ ≣ C ⊗
©	On	coverage_cleanup	None	zettagene	000000000	2019-03-19 09:37 🚯	e e	⊙ ♥ ♥ Ji Bi ★ ≧ ≁ ≣ C ⊗
Ø	On	coverage_pipeline	None	zettagene	\$ 000000000	2019-03-20 13:05 🚯	3 9	⊙ ♥ ♥ Ji Bi 木 ≧ ≁ ≣ C ⊗
G	On	vcf_cleanup	None	zettagene				⊙ ♥ ♥ Ji Bi ★ ≧ ᠮ ≣ C ⊗
ß	On	vcf_pipeline	None	zettagene	0000000000	2019-03-08 19:10 3	5079	⊙ ♥ ♥ ⅆ ฿ ★ ≣ ୨ ≣ C ⊗

Interpretation tools:

-) Tabular view on variants and genotypes
-) Charts, statistics, breakdowns
- Sine grained access control
- $\dot{\gamma}_{1}$ IGV view of variants and aligned reads

🖥 Update View	Dis	playing maximu	m of 1000 rows	Statisti	ics of selected variant	calls	Statistics of all w	ariant calls Popu	lation breakdow	n							
🛍 Sample filters 🛛 <	Show	15 \$ entries	i.													Search:	
🗶 Variant filters 🛛 👻		sample_id	gt	chr	🔶 🛛 pos 🕴	ref	alt 🕴	🍦 variant_id 🕴	af 🕴	gnomad_af	max_af 🕴	impact	consequence	gene_symbol	exon	aminoacids	sift
Impact HIGH MODERATE		A						A,		Al			All	All		All	All
	1	NA19438	A G	18	2890770	G	Α	rs16943977	0.0219649	0.004643	0.0809	MODERATE	missense_variant	EMILIN2	4/8	A/T	tolerated(1)
Clin. significance	2	NA19438	A C	18	2890855	с	A	rs36046935	0.0151757	0.003314	0.056	MODERATE	missense_variant	EMILIN2	4/8	T/K	tolerated(0.05)
benign	3	NA19438	A C	18	5891054	с	A	rs577863972	0.00259585	0.009921	0.06699	MODERATE	missense_variant	TMEM200C	3/3	R/L	tolerated(0.05)
Consequence	4	NA19438	A)G	18	5891055	G	٨	rs559244640	0.00259585	0.009825	0.06634	MODERATE	missense_variant	TMEM200C	3/3	R/W	deleterious(0.01
	5	NA19438	GĮA	18	6908977	G	A	rs116232392	0.0249601	0.00633	0.0877	MODERATE	missense_variant	ARHGAP28	16/17	C/Y	tolerated(0.19)
	6	NA19438	. A	18	8784372	A	τ	rs918272	0.0231629	0.007106	0.0779	MODERATE	missense_variant	MTCL1	6/17	E/D	tolerated(0.75)
Gene	7	NA19438	G C	18	9221885	с	G	rs2298548	0.0463259	0.06377	0.08982	MODERATE	missense_variant	ANKRD12	8/13	P/A	tolerated(0.31)
AADACL2	8	NA19438	T C	18	9254787	с	т	rs17498752	0.0461262	0.06357	0.0878	MODERATE	missense_variant	ANKRD12	9/13	Т/1	deleterious_low
max AF	9	NA19438	A C	18	9255786	с	A	rs72939232	0.0595048	0.06773	0.09	MODERATE	missense_variant	ANKRD12	9/13	T/N	tolerated_low_c
0.05-0.3	10	NA19438	C T	18	9258539	т	с	rs3744822	0.0621006	0.067	0.09986	MODERATE	missense_variant	ANKRD12	9/13	S/P	tolerated(0.32)
0 81 82 83 84 05 06 07 08 93 1	11	NA19438	A G	18	23421436	G	A	rs76709352	0.0259585	0.00561	0.0946	MODERATE	missense_variant	TMEM241	3/15	T/M	deleterious(0.03
	12	NA19438	G A	6	158066494	A	G	rs61601143	0.0241613	0.004605	0.0885	MODERATE	missense_variant	SYNJ2	12/27	N/D	tolerated(0.19)
	13	NA19438	G A	6	168030801	G	A	rs34049091	0.0215655	0.00498	0.0802	MODERATE	missense_variant	KIF25	7/13	A/T	tolerated(0.36)
	14	NA19438	A G	6	168062944	G	٨	rs902393	0.0696885	0.071	0.092	MODERATE	missense_variant	FRMD1	7/11	R/C	tolerated(0.14)
	15	NA19438	C G	6	170584376	G	с	rs74482927	0.0211661	0.004123	0.0779	MODERATE	missense_variant	PDCD2	1/6	P/R	tolerated(0.13)
	Showi	ing 1 to 15 of 781	entries											Previous	1 2	3 4 5	53 Ne

Displaying maximum of 1000 rows Statistics of selected variant calls Statistics of all variant calls Population breakdow

Any questions? You can find us at blodatageeks.org