
Scalable solutions for genomic data analysis

Tomasz Gambin

Institute of Computer Science, Warsaw University of Technology

1

http://biodatageeks.org

http://github.com/ZSI-Bio

http://twitter.com/biodatageeks

http://biodatageeks.org
http://github.com/ZSI-Bio
http://twitter.com/biodatageeks

2

About us

Areas of interest:

- Genomic data analysis

- Distributed solutions for genomics

Applications:

- Distributed pipelines for variant calling

- Depth of coverage analysis, quality control

- Distributed range joins implementation

- Efficient variant data warehousing solutions

- Interpretation tools

That’s us

>300 novel disease genes

Challenges

5

5

Multi-sample analysis
Data standardization and

merging as additional overhead

Data size
Heavy files, inefficient data access,
temporary files generation. High
storage cost

Data security

‘All or nothing’ approach is not enough
for research projects or clinics

Performance
Computation intensive steps in

pipelines and painful long lasting
operations in data analysis.

Our solutions

Optimized algorithms Standard technologies

Fine-grained access control

Distributed calculations
Reimplementation of algorithms using

Apache Spark and other Big Data tools

Unified data model
Providing ANSI SQL-compliant
interfaces
Table-oriented processing

Ensuring scalability to handle
population-scale analysis

SeQuiLa (range joins)- scalable intersection of interval sets

SELECT g.chr, g.name, g.start, g.end, s.start,
s.end, s.af
FROM genes g JOIN snps s ON (
 g.chr = s.chr AND s.start>= g.start AND s.end
<= g.end)

● counting overlaps
● additional criterias on overlap (maxGap, minOverlap)

real genomic example: (160 *106) x (200 *103) or even:

(2,6 *109) x (200 *103)

e.g: What variants (snps) occur WITHIN genes

6

SeQuiLa (range joins): methods

Extension of Catalyst (SparkSQL component)

1. IntervalTree structure is used for efficient overlaps search
a. Interval Forest (one tree for each chromosome)

2. augmenting IntervalTree with table data if possible

Algorithm for range join table A (small) with table B (big):

1. Send to driver node all table A partitions
2. Build Interval Forest in driver node
3. Broadcast Interval Forest to all worker nodes
4. Perform interval search
5. Join search results with table A if necessary

7

SeQuiLa (range joins)

● single node
● data: WES (17 GB
● reads (160 *106) x targets (200

*103))

f Benchmark against:

● featureCounts
● SparkGenap
● spark default

8

● cluster (4 worker nodes)
● data: WGS (270 GB)
● reads (2,6 *109) x targets (200

*103)

 Benchmark against:

● SparkGenap

9

Distributed Depth of Coverage:

Distributed calculations

Simple event-based algorithm

Low level optimizations

Standalone version

 re details at: https://www.biorxiv.org/content/10.1101/494468v1 and http://biodatageeks.org/sequila/

2019

https://www.biorxiv.org/content/10.1101/494468v1
http://biodatageeks.org/sequila/

10

Automatic execution

Customizations

Monitoring of task execution

Distributed calculations

Benchmark:

Distributed variant annotation pipeline:

11

Interpretation tools:

Tabular view on variants and genotypes

Charts, statistics, breakdowns

Fine grained access control

IGV view of variants and aligned reads

12

13

More Pipelines

Faster Model

Security

Further research

Distributed pipelines for CNV and RNA-seq

Fine-tuning of data model to increase query performance

Assuring data security for in-memory cache solutions

Distributed implementations of algorithms for downstream analysis

Thanks!
Any questions?
You can find us at biodatageeks.org

